Posterior convergence rates in non-linear latent variable models
نویسندگان
چکیده
Non-linear latent variable models have become increasingly popular in a variety of applications. However, there has been little study on theoretical properties of these models. In this article, we study rates of posterior contraction in univariate density estimation for a class of non-linear latent variable models where unobserved U(0, 1) latent variables are related to the response variables via a random non-linear regression with an additive error. Our approach relies on characterizing the space of densities induced by the above model as kernel convolutions with a general class of continuous mixing measures. The literature on posterior rates of contraction in density estimation almost entirely focuses on finite or countably infinite mixture models. We develop approximation results for our class of continuous mixing measures. Using an appropriate Gaussian process prior on the unknown regression function, we obtain the optimal frequentist rate up to a logarithmic factor under standard regularity conditions on the true density.
منابع مشابه
Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals
BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...
متن کاملBlack Box Variational Inference for State Space Models
Latent variable time-series models are among the most heavily used tools from machine learning and applied statistics. These models have the advantage of learning latent structure both from noisy observations and from the temporal ordering in the data, where it is assumed that meaningful correlation structure exists across time. A few highly-structured models, such as the linear dynamical syste...
متن کاملBayesian Unmasking in Linear Models
We propose a Bayesian procedure for multiple outlier detection in linear models which avoids the masking problem. The posterior probabilities of each data point being an outlier are estimated by using an adaptive learning Gibbs sampling method. The idea is to modify the initial conditions of the Gibbs sampler in order to visit the posterior distribution space in a reasonable number of iteration...
متن کاملDeterminants of Inflation in Selected Countries
This paper focuses on developing models to study influential factors on the inflation rate for a panel of available countries in the World Bank data base during 2008-2012. For this purpose, Random effect log-linear and Ordinal logistic models are used for the analysis of continuous and categorical inflation rate variables. As the original inflation rate response to variables shows an appar...
متن کاملBayesian Manifold Learning: The Locally Linear Latent Variable Model
We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic model for non-linear manifold discovery that describes a joint distribution over observations, their manifold coordinates and locally linear maps conditioned on a set of neighbourhood relationships. The model allows straightforward variational optimisation of the posterior distribution on coordinates and locally lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011